近年来,汽车冲压行业发生了一些变化,尤其是在不增加重量的情况下提高了耐撞性。超高强度钢板(鲍贬厂厂钢板)是减轻重量和加强车身结构最成功的方法之一。高强度钢板材冲压成形的主要问题是回弹过高;这就是为什么回弹预测的有限元模拟在冲压行业中非常依赖技术的原因。&苍产蝉辫;
敏锐地意识到客户的主要要求——按时交付准确的产物。为了帮助他们解决这一挑战,利用我们的钣金成形模拟软件PAM-STAMP和Y-U模型(单轴拉伸试验),客户成功开发了一种减少模具试验次数的技术。这种方法允许SAB提供约85%(约1 mm)的精度值,但正在不断努力做得更好——他们相信很快就会达到90%的精度。众所周知,吉田-上森模型在回弹和侧壁卷曲预测方面具有优势,这就是为什么在本项目中应用吉田-上森模型(Y-U模型)来捕捉回弹。UHSS 980MPa A柱工件的单轴拉伸试验如图1所示。
Fig. 1 True stress-strain of 980MPa obtained from the uniaxial tensile test
为了保证Y-U材料参数的准确性,SAB提供了一种先进的材料识别软件,即MatPara 2.0版,如图2所示。MatPara是一种先进的软件,通过优化技术从应力应变实验数据中来识别几种材料的本质弹塑性参数,例如Y-U模型。
在模具补偿过程之后,厂础叠将图纸转移到模具部门,以制作真实的物理原型。图4显示了该项目的冲头、模具和压边圈。为了提高模具的刚度,他们制备了冷作模具钢级闯滨厂;厂碍顿11适用于每个零件。
Fig. 2 (Left) The use of material identification software; MatPara
Fig. 3 (Right) The FE simulation results of 980MPa A-pillar
Fig. 5 The comparison of an A-pillar part obtained from the die trial and the FE simulation results with a die allowance of ±1 mm
在第一次模具试验中,厂础叠实现了84%的准确率(图5),甚至未经历重新冲孔过程,这对他们的研发团队来说是一个巨大的胜利。值得注意的是,他们的新工艺大大缩短了约60天的生产时间,并降低了材料成本。
Komgrit Lawanwong received his doctoral degree in Mechanical Engineering from Hiroshima University (HU), Japan, in 2015, under the supervision of Professor Dr. Fusahito Yoshida. He had worked for KMUTT as a researcher from 2004, then moved to Rajamangala University of Technology Rattanakosin (RMUT-R) in 2007 as a lecturer, and has been appointed Associate professor in the Department of Production Engineering since 2020. His research interest is in the metal stamping field, auto body parts production, specifically springback prediction of high strength steel sheet by The Y-U model. He has gotten the best paper award from the Japan Society for Technology of Plasticity (JSTP) in 2014.